

Community Questions: Regarding BWXT Activities in Jonesborough

Table of Contents

- I. Site Plan, Facility Design, and Land Use (p. 2)
- II. Emissions, Air Quality, and Health Risk (p. 10)
- III. Water, Waste, and Environmental Impact (p. 15)
- IV. Transportation and Public Safety (p. 23)
- V. Material, Chemistry Control, Process, and Scope (p. 31)
- VI. Economic Impact and Job Creation (p. 35)
- VII. Regulatory Compliance and Transparency (p. 39)
- VIII. Precedent and Long-Term Liability (p. 41)
- IX. Regarding Waste and the HPDU Processing (p. 46)
- X. Safety Concern Due to Previous System Failure at AOT (p. 47)
- XI. New Manufacturing Codes (p. 49)
- XII. Past Incidents and Future Public Safety (p. 50)

I. Site Plan, Facility Design, and Land Use

What aspects of the land being requested for rezoning make it an ideal location for this type of work/process? Please speak to the actual site itself (including the area requested for rezoning to M2), as well as surrounding infrastructure, requirements for operations, ability to operate safely, etc.

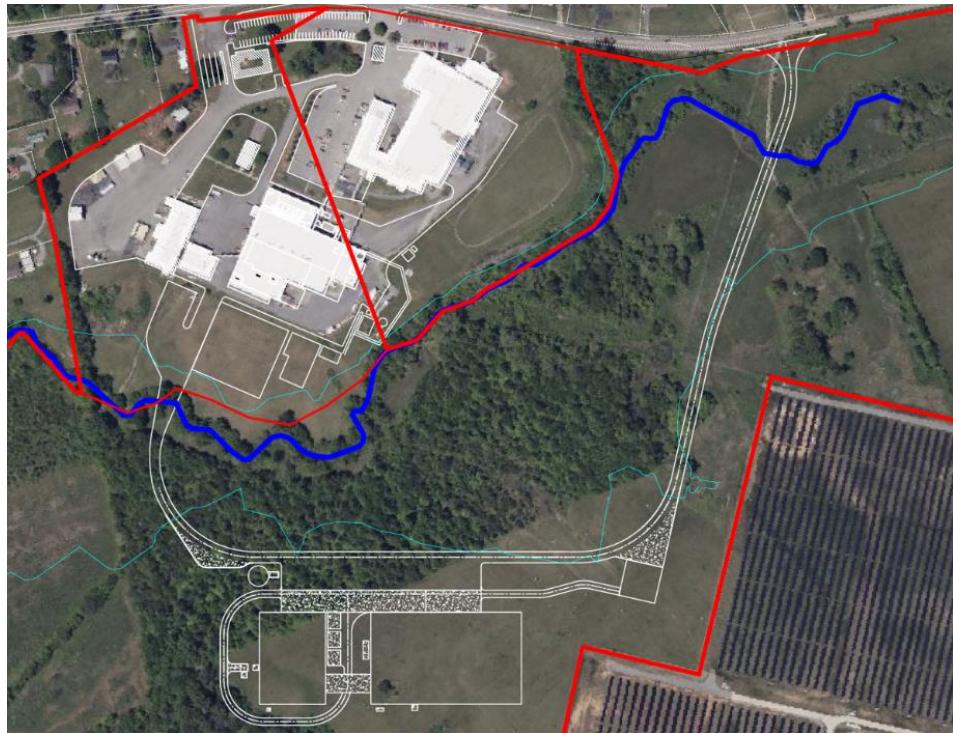
The land requested for rezoning to M2 is exceptionally suited for the proposed industrial activities, ensuring the highest standards of safety and community well-being. Here are the key aspects that contribute to its ideal location:

- *Longstanding Industrial Context:* This property is part of the existing BWXT Jonesborough campus, which has safely operated as an industrial site for over 50 years. Its established history of responsible industrial use reinforces its capacity to support our operations while prioritizing community health.
- *Integrated and Secure Campus:* The parcel is under common ownership (BWXT), contributing to a cohesive, well-managed campus that emphasizes security and safety. The integrated approach allows for streamlined operations, safeguarding both our processes and the surrounding community.
- *Well-Developed Infrastructure:* The site benefits from comprehensive infrastructure, including advanced security measures, support buildings, and essential utilities. This existing infrastructure is designed to efficiently support our operations while prioritizing safety.
- *Sustainable and Minimal Disruption:* The first new depleted uranium metal purification and conversion line will be located within an existing building. This allows us to begin production with minimal land disturbance and without significant new construction, allowing for efficient use of the current facility footprint and infrastructure.
- *Rigorous Environmental Compliance:* We are fully committed to adhering to all necessary regulatory requirements. Our operations will be subject to thorough permitting processes, including air, wastewater, and radiological permits, as well as comprehensive NEPA reviews and local approvals. This ensures that we meet or exceed environmental safety standards.
- *Proven Safety Record:* The existing facility has a longstanding record of safely conducting metal reduction activities for several decades. This proven safety track record not only demonstrates the site's reliability but also assures the community of our commitment to safe operations.
- *Capacity for Future Demand:* The remaining two production lines, integral to meeting our national security commitments, will also be located within the proposed re-zoned area. Their strategic positioning allows for the safe and efficient transfer of materials, enhancing operational effectiveness while prioritizing safety at every step.
- *Floodplain Management Strategy:* Importantly, all proposed facilities will be situated outside of identified flood zones. This approach aligns with sound land-use and floodplain management practices,
- *Support from Land-Use Planning:* Our rezoning request represents a responsible extension of the existing industrial zone, compatible with the surrounding land uses. It maintains adequate separation from less intensive areas, and the Washington County Planning Office

has endorsed this request, confirming that it is not spot zoning and aligns with community interests.

In summary, the combination of established safety protocols, robust infrastructure, environmental compliance and a commitment to sustainable practices position this site as an ideal location for the proposed industrial activities. We remain dedicated to fostering a safe and secure environment for both our operations, our neighbors and the community at large.

Did you discuss any other locations within Washington County? Did you discuss this with county officials either before or after your purchase of this site?


No, alternate locations within Washington County were not discussed with county officials either before or after the purchase of this site. At the time of acquisition, the property was already under contract for a pilot-scale process related to this work. Since the site is the only source of depleted uranium products to the Federal government and is the current site of a depleted uranium metal purification and conversion line, it was a natural and logical location when expansion was needed for the full production project.

(Intentionally left blank)

Where is the complete site plan? Please provide the full, final site plan including building footprints, storage areas, waste-handling zones, and transportation routes.

BWXT evaluated multiple siting options for the second and third HPDU purification production lines including placement on the existing M-2-zoned parcel.

After careful consideration, BWXT selected the rear portion of the property because it provides meaningful benefits to the surrounding community. This location maximizes buffer distance from neighboring properties, significantly limits visual impacts

through existing tree coverage, and allows for a more effective internal roadway configuration that separates inbound and outbound traffic and enables vehicles to exit the property using different access points onto the public roadway. These benefits are not as readily achievable if the same facilities were placed on the existing M-2 parcel and were central to developing a site plan that is more compatible with nearby land uses.

Importantly, this siting decision does not change any permitting or regulatory requirements, including NEPA review, nor does it alter the safety basis or engineered controls for the facilities and associated processes. Utilizing either option places all buildings outside of the 500-year FEMA flood zone. If the rezoning were denied, BWXT will work to proceed with the alternate option on the existing M-2 parcel and would do so with the same commitment to safety, regulatory compliance, and environmental protection. However, the selected site plan reflects a deliberate effort to incorporate additional buffers, reduced visual impact, and improved traffic flow with the public in mind, while also enabling BWXT to meet an urgent national security mission on the required schedule.

What specific activities will occur in each building? List all processes, materials handled, and maximum quantities.

Zone Area	Scope Mission	Process	Sub-Processes	Notable Materials
Established M-2 Area	Initial Purification Processing Line	Purification Processing	Dissolution of DU Oxide	Nitric Acid
			Purification (as needed)	TBP
				Dodecane
			Oxidation	-
			Liquid Waste	Lime (calcium hydroxide)
			Solidification	Portland Cement
			NOx Scrubbers	Sodium Hydroxide
			Dry/facility ventilation with HEPA filtration	-
			Hot Oil Heating Systems	Paraffinic mineral oil
		Maintenance Shop	Spare Parts	-
			General Maintenance	-
			Safety System	-
			Maintenance	-
	In-Process Storage	Storage locations for drums	Sulfuric acid	
			Oxalic acid	
			Uranium oxide	
			Magnesium Oxide	
		Analytical Storage Laboratory	Sample analysis for site	-
	Dry Processing	Metal Reduction	Magnesium Oxide	
			Uranium Tetrafluoride (UF4)	
		Fluorination Systems	Anhydrous Hydrofluoric Acid	
Initial Fluorination	Intermediate Product Generation	Off-Gas Scrubbers/Treatment	Potassium hydroxide	
			Lime (Calcium Hydroxide)	
			Reduction in AHF waste	
		HF/CaF2 recycle		
		Fluorination Systems	Anhydrous Hydrofluoric Acid	
	Initial Tanks	Diked Tank Farms	Potassium hydroxide	
			Sodium Hydroxide	
		Consumable Storage	Empty Containers, etc.	-
		Product Storage	No processing	DU Oxide, DUF4, DU Metal
			Dissolution of DU Oxide	Nitric Acid

Zone Area	Scope Mission	Process	Sub-Processes	Notable Materials
Proposed M-2 Area	Initial Purification Processing Line	Purification Processing	Purification (as needed)	-
			Oxidation	-
			Liquid Waste	-
			Solidification	-
			NOx Scrubbers	-
			Dry/facility ventilation with HEPA filtration	-
			Hot Oil Heating Systems	-
		Maintenance Shop	Spare Parts	-
			General Maintenance	-
			Safety System	-
			Maintenance	-
		In-Process Storage	Storage locations for drums	-
		Analytical Storage	Sample analysis for site	-
		Laboratory	-	-
		Dry Processing	Metal Reduction	-
	Fluorination	Intermediate Product Generation	Fluorination Systems	Anhydrous Hydrofluoric Acid
			Off-Gas Scrubbers/Treatment	-
			HF/CaF2 recycle	Reduction in AHF waste
	Storage	Drum Solid Waste Storage	No processing	Solidified liquid waste and dry waste
	Tanks & Utilities	Bulk Storage	Diked Tank Farms	-
	Storage	Consumable Storage	Empty Containers, etc.	-

Maximum material and consumable quantities are evaluated through permitting and NEPA processes that assess environmental and public health impacts, whereas rezoning determines whether the proposed use is appropriate for the land. All material and consumable quantities must comply with all permitting allowances.

What is the maximum storage capacity for hazardous materials on site? Include depleted uranium, reagents, solvents, and waste.

The maximum storage quantities for hazardous materials, such as depleted uranium, reagents, solvents, process intermediates, and waste, are carefully regulated and determined through rigorous state and federal permitting processes, along with comprehensive NEPA reviews.

Exact storage capacity amounts are not available at this time. Here's why:

- Rezoning serves as an essential foundational step in this process, allowing for a thorough assessment of whether the proposed land use aligns with local regulations. The Washington County Planning Office confirmed the proposed land meets this threshold through their recommendation to approve the rezoning.
 - Prior to permitting and NEPA reviews, confirming zoning compatibility is crucial, as permitting agencies require this confirmation to effectively carry out their detailed technical assessments.
- Upon establishing zoning compatibility, we conduct in-depth evaluations to develop material inventories and storage limits. This evaluation is carried out through amended air, wastewater, radiological, and hazardous materials permits, complemented by careful NEPA assessments. During these reviews, we assess quantities against facility design, safety systems, environmental impacts, and public health protections to ensure safe management of hazardous materials.
- Importantly, all storage practices must comply with stringent safety, environmental, and emergency management standards, and no materials may be stored in excess of what is thoroughly reviewed and approved by the appropriate regulatory authorities.

(Intentionally left blank)

What is the projected lifespan of the facility? And what is the long-term land-use plan if operations cease?

The current contract with the NNSA has a defined period of performance that extends through Sept. 30, 2035. In awarding this contract, the federal government identified the need not only to meet near-term requirements, but also to establish a capability for continued production of depleted uranium metal to support long-term national security needs.

The facilities being designed, constructed and utilized under the current contract are intended to support both the defined contract period and the establishment of this enduring production capability. Industrial facilities of this type are typically designed with multi-decade service lives, with building structures, foundations and utilities engineered for long-term use.

Importantly, long-term land stewardship has been incorporated into the project plan. Decontamination and decommissioning activities are included within the scope of the current contract award, ensuring that facilities can be systematically cleaned, transitioned, or removed at the end of their operational life. This life-cycle approach reflects modern federal contracting practices and is specifically intended to prevent the creation of unmanaged or legacy contamination.

This approach is fundamentally different from past practices that occurred decades to a half-century ago, often before modern environmental standards existed. In contrast, this project is designed, operated and ultimately closed under current regulatory frameworks. This includes defined responsibilities for site management throughout its operational life and beyond.

As a result, the long-term use and stewardship of the land are planned and managed from the outset. BWXT's current record of sustainability and corporate social responsibility can be found at: [2025-SR_Interactive.pdf](#).

(Intentionally left blank)

What is the total acreage required for future expansion? BWXT has stated plans to expand—what does that expansion entail?

The acreage included in the rezoning request (56-acres) encompasses all land required to support HPDU processing activities for the current contract and any follow-on contract associated with this capability. No additional acreage beyond what is included in this request is anticipated or planned for this project.

The planned expansion reflects a thoughtful and phased approach, focusing on a contained buildup that is essential for achieving full production capability. This includes the addition of two uranium processing lines and related ancillary support facilities, all situated within the rezoned area.

All facilities associated with this expansion will remain within the existing BWXT Jonesborough property, adjacent to BWXT land already zoned for industrial use and buildings will be sited outside identified flood zones. The expansion is limited to supporting this single, defined project and is intended to establish a durable, long-term industrial capability consistent with the site's use case.

(Intentionally left blank)

II. Emissions, Air Quality, and Health Risk

Please provide the full list of airborne emissions, including all radionuclides and chemical particulates. In this, also provide the exact numbers submitted to TDEC.

The potential airborne emissions associated with the proposed HPDU processing activities include the following chemical constituents and radionuclide forms:

Uranium Compounds

- Triuranium Octoxide (U_3O_8) (solid, often referred to as “yellow cake”)
- Uranium Dioxide (UO_2) (solid, black sand)
- Uranium Tetrafluoride (UF_4) (solid, often referred to as “green salt”)
- Uranium Trioxide (UO_3) (solid, orange to brown)

Processing Chemicals

- Tributyl Phosphate (TBP) (used in depleted uranium purification)
- Calcium Hydroxide ($Ca(OH)_2$)
- Dodecane (used in depleted uranium purification)
- Hydrogen Fluoride (HF) (used in converting uranium oxide to UF_4 , or green salt)

Byproducts

- Portland Cement particulates
- Nitrogen Oxides (NO_x)
- Sulfur Dioxide (SO_2)
- Hydrogen Sulfide (H_2S)

Details related to each chemical constituents can be found at: [Safety Data Sheets | Free SDS Database | Chemical Safety](#)

At this time, design efforts for the expanded HPDU process are in progress and specific emission rates and numeric limits have not been finalized, and air permit applications have not been submitted. This information is typically made available during the NEPA review and public comment period and is not part of land use rezoning.

Rezoning is a threshold land-use determination that confirms whether the proposed use is appropriate for the location and is typically completed before finalizing engineering design, emissions modeling, and regulatory reviews.

The BWXT team understands and appreciates public interest in ensuring that airborne emissions are thoroughly evaluated. That evaluation is specifically the purpose of the air permitting and NEPA processes, where emission quantities, control technologies, dispersion modeling and public health impacts are rigorously analyzed and reviewed by regulatory agencies with subject-matter authority, including Tennessee Department of Environment and

Conservation (TDEC). Those processes result in enforceable limits, monitoring requirements and compliance obligations.

While rezoning establishes land-use compatibility, it does not authorize emissions for construction or operations or material quantities. Rezoning does not replace or bypass the permitting and environmental review processes that are forthcoming. All emissions associated with the project will be required to comply with applicable federal and state standards, and no operations may commence without the necessary regulatory approvals in place. BWXT takes these standards and more importantly, the health and safety of our employees and the public very seriously.

In relation to misunderstandings related to previous emission submittals provided to TDEC:

For an insignificant source determination, the applicant (in this case BWXT Jonesborough) provides a bounding case with respect to emissions to demonstrate to the state that under the worst of cases, emissions would not exceed the regulatory limits for an insignificant determination. For example, even though in this case BWXT Jonesborough has a scrubber and HEPA filtration on process outputs that would result in an expected removal efficiency of >99%, the assumption basis for the application would credit a much lower removal efficiency (80%). The application basis does not take credit for daily air samples where an issue would be quickly identified and result in immediate investigation and corrective action. For application purposes, a problem is assumed to continue for the entire year for the bounding case. In reality, emissions are expected to be measured on a gram level, not a pounds or ton(s) per year basis.

In the state of Tennessee, an insignificant activity/emissions unit is defined as an activity/emissions unit that has the potential to emit less than 5 tons per year of each air contaminant and each regulated air pollutant that is not a hazardous air pollutant, and less than 1,000 pounds per year of each hazardous air pollutant unless specifically excluded from designation per regulation. Technically, this application is only for hazardous chemicals in the emission stream. The Tennessee Division of Radiological Health regulates the emission of radioactivity as an agreement state with the NRC.

What are the annual emission quantities for each uranium compound? Please include numbers from ALL processes currently conducted, and processes to be conducted in the future. Also, provide the exact numbers submitted to TDEC.

All uranium compounds combined are expected to be measurable on a gram basis (1 gram = 0.04 ounces) for a given year of production. For uranium and other radionuclides, regulatory compliance is evaluated primarily on a dose-based standard, rather than on mass-based annual emission quantities. Under the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for radionuclides other than radon, the allowable public exposure from facility air emissions is limited to 10 millirem per year (10 mrem/yr) on a radiological dose basis ([Subpart H: National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities | US EPA](#)). For comparison, an average American gets 300 mrem of exposure through normal daily living (i.e., background radiation). A dose of 10 mrem per year is a small fraction of natural background and is comparable to the dose from a single chest X-ray spread over the course of an entire year.

While specific annual emission quantities for individual uranium compounds are still in the process of being finalized, this step is part of the standard regulatory sequence. Permitting agencies necessitate confirmation that the proposed activities align with local zoning before detailed technical reviews can be conducted to establish precise permitting values and limits.

How We Ensure Safety

Uranium-bearing materials are processed within negative-pressure buildings equipped with local exhaust ventilation, pre-filtration, high-efficiency particulate air (HEPA) filtration systems and scrubber systems which are designed to minimize airborne releases. In addition, airborne emissions are monitored daily to facilitate early identification of potential equipment issues, timely investigations and implementation of recommended corrective actions to further ensure emissions remain significantly below regulatory limits.

Detailed modeling of airborne radionuclide emissions and corresponding dose calculations will be completed and documented as part of the required NEPA environmental evaluation, where emission source terms, control efficiencies, dispersion modeling and potential public exposure are rigorously analyzed. Those analyses establish the enforceable limits that apply to facility operations and provide the final design basis to mitigate the potential for public exposure.

It's crucial to clarify that determinations surrounding radiological hazards and radiation exposure fall under the jurisdiction of TDEC (as Tennessee is an NRC Agreement State), and such determinations are not part of local land-use or rezoning decisions. In Tennessee, the regulation of radioactive materials, including uranium, is governed by TDEC's adherence to both state and federal laws, through specialized licensing, permitting, inspection and enforcement programs that prioritize radiological safety, public health, and environmental protection.

BWXT Ordnance Tennessee operates under the rigorous standards of TDEC for existing depleted uranium processing. Our commitment to sustainability and community well-being is demonstrated in our latest sustainability report: [2025-SR Interactive.pdf](#).

What is the modeled dispersion radius for airborne particulates? Include worst-case meteorological conditions.

At this stage of the project, it's important to understand that a single, fixed "dispersion radius" for airborne particles is not a relevant measure. The dispersion of airborne materials is influenced by various factors, including the type of material, release characteristics, control technologies, meteorological conditions, terrain and the regulatory endpoints being evaluated, such as concentration or dose.

Airborne dispersion assessments are carefully conducted through the NEPA process and adhere to strict air permitting requirements. This involves detailed dispersion modeling that uses established methodologies to evaluate how emissions disperse under a range of conditions, including worst-case meteorological scenarios. These analyses are designed to assess potential impacts on workers, the public and the environment, ensuring that community safety remains a priority.

For uranium and other radionuclides, dispersion modeling concentrates on public dose rather than distance alone, ensuring compliance with federal standards, including the critical limit of 10 millirem per year for airborne radionuclide emissions to protect public health. In evaluating chemical constituents, modeling assesses concentrations against health-based and regulatory thresholds designed to safeguard community well-being.

As explained previously, we want to emphasize that uranium processing occurs within advanced negative-pressure buildings equipped with state-of-the-art technologies, including pre-filtration, high-efficiency particulate air (HEPA) filtration, and scrubber systems. These measures significantly reduce airborne releases at the source, leading to modeled impacts that are localized and decrease quickly with distance from the facility.

The rezoning process is an important step in establishing land-use compatibility for this activity. Detailed dispersion modeling and quantitative impact assessments are integral aspects of the permitting and environmental review processes. The findings from these analyses are formally documented, thoroughly reviewed by regulatory agencies, and subject to enforceable limits aimed at protecting community health and the environment.

We remain committed to transparency and the safety of our community throughout this process, and we are dedicated to maintaining the highest standards of environmental protection.

Please identify whether any air dispersion or dose modeling (including CAP-88 or equivalent) was performed to support the radionuclide insignificance determination for the HPDU process. If no modeling was performed, please describe the specific calculation method, assumptions, and conservative bounding analysis used to demonstrate that public dose remains below 0.1 mrem/year.

No air dispersion or dose modeling, including CAP-88 or equivalent analyses, has been performed specifically for the HPDU production process that is the subject of this rezoning request. As regulatory reviews are conducted, the design and build basis must align with established regulatory requirements.

The need for dispersion and dose modeling is evaluated and addressed as part of the permitting and environmental review processes, where finalized process designs, emission source terms, and control configurations are available and can be accurately modeled. Those analyses support any required radionuclide insignificance determinations and establish enforceable compliance with applicable requirements.

It is acknowledged that there has been public discussion referencing dispersion and dose information from prior permits associated with pilot-scale HPDU activities conducted at the site. That information reflects a different scope, scale, and process configuration and is not representative of the HPDU production process proposed here. While those prior permits demonstrate the site's history of regulated operations, they should not be interpreted as modeling results or determinations for the current project.

For the NNSA HPDU process, any required air dispersion and dose modeling will be conducted using approved methodologies, such as CAP-88 or equivalent tools, at the appropriate stage of

project development and will be reviewed by the relevant federal and state regulatory agencies as part of formal permitting and environmental evaluation.

What is the company's response to the ATSDR-based calculation showing a 2.5%–7.5% increased lifetime cancer risk for children within one mile? Has BWXT conducted a child specific cancer-risk assessment given the BWXT facility's close proximity to schools and residential housing here in Washington County?

First, it is important to understand that ATSDR screening tools are intentionally conservative and are designed for initial public-health screening, not for evaluating permitted and controlled industrial facilities. These tools assume continuous, long-term exposure at screening concentrations, 100 percent bioavailability, worst-case intake assumptions, and no emission controls. While appropriate for identifying potential issues that warrant further study, these assumptions are not representative of how a regulated industrial facility is designed, permitted or operated.

The ATSDR-based calculation cited does not reflect the design or regulatory controls of the proposed HPDU facility. The process is conducted within negative-pressure buildings equipped with high-efficiency particulate capture, HEPA filtration, and scrubber systems, with emissions subject to enforceable limits, monitoring, and oversight by TDEC and other regulatory agencies. These controls are specifically intended to minimize airborne releases and result in actual potential exposures that are orders of magnitude lower than the conservative screening assumptions used in ATSDR tools.

With respect to children and other sensitive populations, regulatory air dispersion and dose modeling inherently assumes continuous exposure and conservative receptor scenarios, including to members of the public. If a credible increase in lifetime cancer risk in the range cited (2.5%–7.5%) were supported by realistic exposure modeling, it would represent a significant impact and would be clearly identified and addressed through a NEPA environmental evaluation and applicable permitting reviews.

To date, no such finding has been made for this project. Quantitative, child-protective risk evaluations and protective risk measures for the public are appropriately conducted through formal environmental review and permitting processes using validated models and site-specific inputs, rather than through preliminary screening tools applied outside their intended context.

What monitoring equipment will be installed at the site perimeter and also installed on the stacks? Will there be an active monitoring system in place? Will this be self-reporting, or an automated reporting system? Who will manage and own the data, and will it be publicly accessible in real time?

Air monitoring will be implemented using industry-standard systems appropriate for the types of emissions associated with the proposed operations. Monitoring will occur at both emission points (stacks) and, where required, through site-perimeter monitoring programs consistent with applicable regulatory requirements.

Stack monitoring systems typically include continuous or periodic sampling equipment, depending on the pollutant and permit conditions, and are designed to verify compliance with emission limits. These systems may include continuous emission monitoring systems (CEMS) for certain parameters or approved periodic sampling methods for others, as specified by permit requirements. BWXT will rigorously adhere to all requirements for the appropriate equipment and monitoring systems.

Perimeter monitoring, where required and which BWXT Ordnance Jonesborough currently and will continue to perform, is generally designed to confirm that facility operations are not resulting in off-site impacts and may include fixed-location air samplers or other monitoring approaches appropriate to the materials being handled.

The monitoring program will be an active system, meaning that emissions are measured using installed equipment and defined sampling protocols rather than inferred or estimated alone. Monitoring requirements, frequencies and methodologies are established through the permitting process and are enforceable conditions of issued permits.

Monitoring data are reported to TDEC in accordance with permit requirements. TDEC reviews these submittals as part of its regulatory oversight and compliance assurance responsibilities. At present, this type of monitoring data is not generally made available in real time, but is instead reported, reviewed and retained through formal regulatory reporting mechanisms.

The data generated through these monitoring systems are managed in accordance with regulatory requirements and best industry practices with oversight by TDEC. The monitoring and reporting framework is designed to ensure transparency, accountability and regulatory compliance while maintaining data integrity and consistency.

III. Water, Waste, and Environmental Impact

What is the total projected water usage per day and per year? Provide minimum, average, and peak estimates.

For initial HPDU production activities located exclusively within the existing industrially zoned area, water usage under peak processing conditions is estimated at approximately 1,200 gallons per operating day.

Once the second and third production lines are implemented within the proposed industrially zoned area, the facilities will not operate simultaneously, other than for the metal reduction process taking place in the existing industrially zoned area. At that point, the first production line would only be used during periods of downtime or maintenance on another line, rather than as a concurrent operation.

Under normal operations, the maximum daily water usage for the project is therefore expected to be approximately 2,400 gallons per operating day, not a combined total. Based on approximately 200 operating days per year, this equates to about 480,000 gallons per year.

For comparison, the U.S. Environmental Protection Agency estimates that a typical U.S. household uses approximately 300 gallons of water per day, making the project's maximum daily water use comparable to about eight households.

LINK: [How We Use Water | US EPA](#)

This level of water use remains very low for an industrial facility, and for additional context, a typical new residential development in Washington County would generally utilize significantly more water on an annual basis than the proposed operations.

What specific reagents will be used in production? Provide concentrations, toxicity profiles, and EPA thresholds.

Like many processing companies, we use industrial reagents (defined as a chemical in a reaction) that are properly transported, stored, used and dispositioned. Secondary containment is designed into the facilities to prevent groundwater intrusion in the event of a spill during unloading or storing, and designs include state of the art controls to ensure safe operations. Employees use personal protective equipment in addition to engineered controls and have access to Safety Data Sheets that detail chemical characteristics, hazards, required safety equipment and emergency response actions. We work with local emergency response personnel to educate them on chemicals used on the site and training for the appropriate emergency response actions commensurate with the type of hazard.

The process uses the following reagents with planned concentrations/forms:

- Anhydrous hydrofluoric acid (HF) – Flourination process (conversion of uranium oxide to uranium fluoride, UF_4)
- Nitric acid – 70 wt% - Dissolution of DU Oxide to uranyl nitrate (UN) solution
- Potassium hydroxide – 45 wt% - HF scrubber solution to neutralize HF to KF
- Sodium hydroxide – 50 wt% - NO_x scrubber solution
- Lime (calcium hydroxide) – powder, used to regenerate KF back to KOH for safe return to HF scrubber. The CaF_2 will be solidified and disposed of as solid waste off-site
- Tributyl phosphate (TBP) (2nd & 3rd production lines only) – mixed with Dodecane for use in solvent extraction purification process
- Dodecane (2nd & 3rd production lines only) – solvent mixed with up to 20% TBP for use in the solvent extraction purification process
- Oxalic acid (2nd & 3rd production lines only) – used to complex metal impurities for better solvent extraction purification process
- Hydrogen – used to reduce the DU oxide in preparation for the fluorination process
- Nitrogen – inert gas used throughout the process for purging systems and providing inert atmosphere in tank headspace
- Sulfuric acid – used to convert uranyl nitrate (UN) solution to DU oxide

As previously discussed, specific inventories (maximum on-site quantities) and detailed chemical hazard evaluations are developed and finalized through the permitting and NEPA evaluation processes, which are designed specifically to vet these details.

Details related to each chemical material can be found at: [Safety Data Sheets | Free SDS Database | Chemical Safety](#)

For a single place to start for health-based screening values used in risk evaluations, the EPA's Regional Screening Levels (RSLs) pages compile toxicity inputs and screening concentrations (primarily used for site risk screening contexts): <https://www.epa.gov/risk/regional-screening-levels-rsls>

What is the total annual waste volume? Break down by solid waste, liquid waste, and radiological waste.

The HPDU process is designed such that process wastes, including all radiological process waste, are solidified and shipped off-site to an appropriately licensed out-of-state disposal facility. As a result, the project does not rely on routine liquid discharges of process waste, and there is no planned introduction of process wastewater to Little Limestone Creek outside of what is already permitted for the site.

This waste management strategy is fundamentally different from practices that led to many historical contamination events at what are commonly called Superfund sites. Many Superfund sites originated from operations conducted decades ago when waste was routinely disposed of on-site with limited regulatory oversight and without long-term closure planning. In contrast, the HPDU operations taking place in Washington County will eliminate on-site disposal entirely, convert process waste into a stable solid form, and transfer it to licensed facilities specifically designed for long-term waste isolation and stewardship.

The site does not currently discharge to a public sewer system nor have any plans to do so in the foreseeable future. Existing sanitary wastewater generated from restrooms and similar domestic uses is managed through the site's existing wastewater treatment facilities. While connection to a public sewer system may be evaluated in the future, it is not a prerequisite for the proposed operations. Importantly, process-related liquid wastes are eliminated at the source through solidification, which removes them from surface-water pathways entirely.

Waste volumes will be provided through the permitting and environmental review processes, including NEPA and, where applicable, NPDES review. Those processes evaluate waste generation rates, handling methods, transportation and disposal pathways and establish enforceable requirements.

The process design explicitly avoids the potential of contaminating Little Limestone Creek by way of the waste stream by eliminating liquid process discharges and managing all process waste through solidification and off-site disposal.

With respect to transportation, the project is expected to result in a modest increase in truck traffic, estimated at approximately four additional trucks per day to support all inbound and outbound material movements. This increase is limited, occurs on roadways already serving industrial traffic, and is not expected to materially affect roadway safety or capacity.

What is the spill-containment plan for each hazardous material? Include secondary containment capacity and flood-scenario modeling.

Spill prevention and response for hazardous materials at the site is based on a defense-in-depth approach that accounts for the potential for human error. The system design relies on engineered safeguards, procedural controls, and training requirements so that no single error or failure can result in an uncontrolled release.

Key elements of this approach include:

- Multiple layers of containment (primary vessels, secondary containment, diked areas, sumps and contained rooms) that mitigate the consequences of operator error or equipment malfunction.
- Passive safety features, such as gravity-based diking and sumps, that function without operator action and remain effective even during abnormal conditions.
- Dedicated de-inventory systems (e.g., for anhydrous HF) that allow material to be safely transferred if a primary vessel leaks, reducing reliance on real-time decision-making during an event.
- Automatic and engineered vapor controls, including scrubbers and local exhaust systems, that mitigate airborne releases even if a spill occurs.
- Drain isolation and segregation, which prevents materials from reaching soil or surface waters regardless of the initiating cause.

All operations involving hazardous materials are conducted by trained and qualified personnel. Training and qualification programs are designed to reduce the likelihood of human error and to ensure rapid, correct response if an abnormal condition occurs. These programs include:

- Material-specific training for each hazardous chemical, including hazards, incompatibilities, spill response and use of personal protective equipment (PPE), based on Safety Data Sheets (SDS) and site-specific procedures.
- Operating procedures (OPs) and job hazard analyses for material handling, transfers and storage, with defined steps and hold points to prevent mis-operation.
- Initial and periodic refresher training, including drills and scenario-based exercises for spill response and emergency conditions.
- Access controls and authorization requirements, ensuring that only trained and qualified personnel perform hazardous material operations.
- Oversight and verification, including management review and compliance with applicable safety and environmental management systems.

The combination of engineered containment, procedural safeguards and trained operators ensures that even in the event of human error, releases are contained, controlled and recoverable, with cleanup conducted using established SDS-based methods and appropriate waste disposition. This integrated approach is specifically intended to prevent off-site impacts and reflects modern industrial safety and environmental protection practices.

Based on the provided overview, there are unique plans for the outlined hazardous materials:

Bulk chemicals in diked areas

Applies to: 70 wt% nitric acid, 45 wt% potassium hydroxide, 50 wt% sodium hydroxide, Ca(OH)_2 slurry, sulfuric acid

- Stored in diked containment areas designed to capture releases.
- Major spill: recovered by pumping from the sump into appropriate containers (e.g., drums) or a tanker truck (volume dependent) and disposed of off-site through approved pathways.
- Small spill: isolate area, cover drains, collect and bind/pump off as appropriate, use compatible absorbents (e.g., commercial liquid absorbent such as Chemizorb®), and dispose properly; clean affected area per SDS guidance.

Ca(OH)_2 powder

- Response emphasizes dry pickup and dust control: "Take up dry, avoid generation of dust, dispose properly, clean affected area," consistent with SDS guidance.

Anhydrous hydrofluoric acid (AHF) — liquid storage/unloading

- AHF is unloaded within a diked area.
- Storage includes a dedicated de-inventory tank used specifically to transfer contents if the main vessel leaks.
- Tanks/vessels are located indoors to provide additional secondary containment and protection.
- The storage rooms are equipped with an emergency scrubber to control and treat off gassing vapors in the event of a liquid spill.

AHF vapor / HF vapor leak control

- Rooms containing HF/AHF equipment have an emergency scrubber designed to treat vapors in the event of a leak.
- Outdoor HF/AHF piping is designed with double containment and corrosion-resistant materials appropriate for service.

Organics: dodecane and tributyl phosphate (TBP)

- Spills are contained inside buildings.
- Response is SDS-driven: isolate, cover drains, collect/bind/pump off as appropriate, use compatible absorbents (e.g., Chemizorb®), dispose properly, and clean affected area.
- Secondary containment within buildings (e.g., internal diking) will be finalized through detailed design and the applicable safety/environmental requirements.

Uranium-bearing powders (inside buildings)

- Managed within controlled indoor areas with adequate ventilation, appropriate PPE, and contamination controls.

- Any material not usable for process is dispositioned and disposed consistent with applicable radiological waste requirements and site procedures.

Uranium-bearing solutions (e.g., uranyl nitrate)

- Key controls: prevent entry to drains, avoid environmental discharge, isolate area.
- For small spills, SDS guidance typically includes neutralization (where appropriate) and uptake with absorbents such as vermiculite/sand.
- After cleanup, the area is monitored for radioactive contamination, and contaminated cleanup supplies are managed as radioactive waste.
- Secondary containment provisions inside buildings (e.g., diked areas) will be finalized through detailed design and applicable requirements.

Sulfuric acid — indoors

- Spills are contained inside buildings.
- SDS-driven response: cover drains; collect/bind/pump off as appropriate; use compatible absorbent/neutralizing materials (e.g., commercial acid neutralizing absorbents such as Chemizorb® H⁺), dispose properly, and clean affected area.

Oxalic acid

- SDS-based response: sweep up and place into suitable, closed containers for disposal.

All hazardous material handling and storage systems are design to mitigate flooding-related risks, particularly given the presence of flood zones elsewhere on the property. As previously noted, all facilities associated with the project are sited outside identified flood zones.

Collectively, the siting of facilities and engineered safeguards provide a robust barrier against flood-related release scenarios and are specifically intended to prevent off-site impacts, reflecting modern industrial design practices.

Given the lack of public sewer at your facility, how will each specific type of wastewater be treated & disposed of? Provide treatment specifications and removal efficiencies.

The facility's wastewater management approach is designed to eliminate process-related liquid discharges and to manage sanitary wastewater using existing, proven systems.

Process wastewater

There will be no liquid process wastewater discharge from HPDU operations. All process liquids are solidified at the source and managed as solid waste, including any radiological waste, and are shipped off-site to appropriately licensed disposal facilities. As a result, no process wastewater is discharged to Little Limestone Creek or anywhere else on site or nearby.

Sanitary wastewater

Sanitary wastewater generated from restrooms and similar domestic uses is managed through the site's existing wastewater treatment facilities, which currently handle these streams. The

absence of a public sewer connection does not affect process operations, as process-related liquids are not routed to sanitary systems.

Stormwater

Stormwater is managed separately from process and sanitary systems through existing or to be installed stormwater controls as new facility buildouts occur. Hazardous materials and process areas are segregated from stormwater pathways to prevent contact or contamination.

While connection to a public sewer system may be evaluated in the future, it is not required for the proposed operations, nor planned or needed for the proposed new and expanded work. Any wastewater-related requirements will be evaluated and confirmed through applicable permitting processes, including NPDES review where required.

What barriers and safeguards will be put in place to prevent the migration of contamination to groundwater or surface water?

The HPDU production scope incorporates multiple redundant barriers and safeguards designed to prevent the migration of contaminants to groundwater or surface water. These protections are based on source elimination, engineered containment and system segregation, rather than reliance on monitoring or cleanup after the fact.

Elimination of Liquid Pathways: A key safeguard includes the complete elimination of liquid process wastewater. All liquid materials are solidified at the source and transported off-site, effectively removing the primary pathway through which contaminants have historically reached groundwater or surface waters at legacy sites.

Engineered Containment and Secondary Barriers: Hazardous materials are systematically stored and handled within engineered containment systems, which include diked areas, sumps, curbing, and contained buildings. These robust systems are designed to capture any spills, ensuring that they do not come into contact with soil, thereby preventing environmental migration.

Segregation from Stormwater Systems: Areas where processes and hazardous materials are conducted are physically separated from stormwater drainage systems. Drain isolation features are implemented to prevent any contact between chemicals and surface runoff. This strategic segregation ensures that rainfall and storm events cannot inadvertently transport materials off-site.

Flood Zone Avoidance and Site Siting: All facilities are strategically located outside identified flood zones, and our containment systems are designed to function effectively, independent of external factors.

Indoor Processing and Vapor Control: Materials that present a higher potential hazard are handled indoors within a negative pressure environment, equipped with local exhaust ventilation and scrubbers. These control measures significantly limit both airborne releases and any subsequent potential deposition onto soil or water.

Procedural Controls and Trained Response: Our engineered safeguards are further supported by comprehensive standard operating procedures, trained personnel, and emergency response plans. This preparation ensures immediate containment and cleanup of any unusual incidents, effectively preventing migration of contaminants before they can impact the environment.

Collectively, these multilayered barriers create a strong defense-in-depth system designed specifically to protect groundwater and surface water from contamination. These measures reflect modern best practices in industrial safety and environmental protection, affirming our commitment to the health and safety of the community and environment.

What is the plan for storm water management in a FEMA designated highest-risk flood zone?

BWXT recognizes that portions of the broader property include FEMA-designated higher-risk flood zones. However, we want to assure the community that all new and existing facilities associated with this project are carefully sited outside the identified flood zones. Furthermore, hazardous material storage and process operations are strategically located within controlled industrial areas designed to prevent contact with stormwater.

Stormwater management for the site will follow a proactive, prevention-based approach aimed at safeguarding the environment and ensuring community well-being. The stormwater management plan focuses on keeping stormwater separated from industrial materials, managing runoff volumes responsibly, and controlling discharge quality through standard, engineered best management practices. These controls are consistent with modern industrial stormwater design and are intended to prevent migration of contaminants to surface waters or groundwater.

Key elements of our stormwater management strategy include:

- **Siting and Grading:** The site is designed to direct stormwater away from process and chemical handling areas.
- **Physical Separation:** We maintain clear separation between stormwater and industrial areas, utilizing curbing, berms, and physical controls to prevent stormwater from entering containment areas.
- **Secondary Containment:** Outdoor bulk chemicals are stored with secondary containment, and indoor operations are designed to prevent rainfall exposure.
- **Erosion and Sediment Control:** Measures will be in place during all construction activities to minimize erosion and sediment runoff.
- **Best Management Practices:** We will implement stormwater best management practices, such as retention/detention features, stabilized conveyances, and controlled outfalls, according to site-specific conditions.

Importantly, the facility's overall waste and wastewater strategy further minimizes stormwater risk by eliminating liquid process wastewater discharges. Process waste will be managed

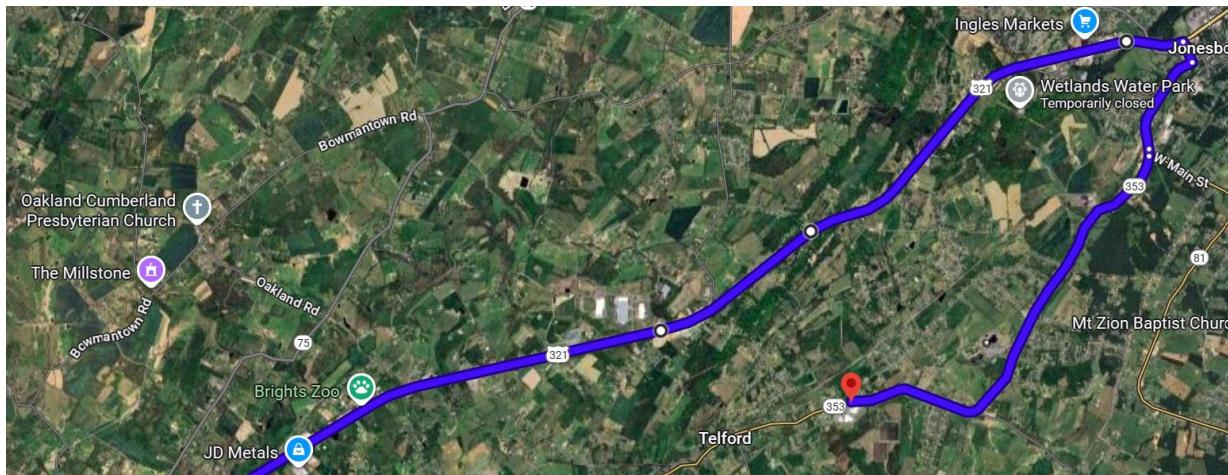
through solidification and off-site shipment, effectively preventing any introduction of liquid materials into surface-water pathways.

From a land-use planning perspective, the rezoning request is designed to confirm that the proposed industrial activities are suitable for this location, adjacent to existing industrial zones within an established industrial campus. Facilities are positioned outside of flood-prone areas, maintaining adequate separation from lower-intensity surrounding uses. The Washington County Planning Office recommended approval of this request, recognizing that it reasonably expands the existing industrial district while maintaining appropriate spacing and avoiding spot zoning due to adjacency to established industrial zoning.

Details regarding stormwater design and compliance requirements will be finalized through appropriate engineering and regulatory processes, including necessary stormwater permitting. This ensures that all stormwater controls are properly sized for site conditions and flood-related considerations, reinforcing our commitment to the safety and environmental protection of the community.

IV. Transportation and Public Safety

How many annual truck trips will involve hazardous materials when the facility operates at full capacity? Provide a breakdown by material type.


At full operational capacity, logistics associated with the facility are expected to result in a limited number of hazardous material truck shipments. Based on current planning assumptions, hazardous material shipments are estimated to average approximately 1.6 truck trips per operating day. Using an estimated 200 operating days per year, this equates to approximately 320 hazardous material truck trips annually. When expressed on a full 365-day calendar year basis, this represents an average of less than one hazardous material truck trip per day, spread across the year. Currently, the site averages less than one truck per day with hazardous material shipments.

For context, the transportation of hazardous materials is routine on public roadways across the United States, with over a million hazardous material shipments occurring nationally each day as part of normal commerce. In that context, the projected shipment volume associated with this facility represents a very small fraction of overall hazardous materials traffic and is not expected to materially affect roadway safety or capacity.

[PHMSA's Quarterly Newsletter for Hazardous Materials Safety April-June 2022 | PHMSA](#)

All hazardous material shipments will be conducted in accordance with U.S. Department of Transportation and PHMSA requirements, using qualified carriers and approved packaging, labeling, and shipping documentation. Rail shipments will not be utilized for this project; all material movement will occur by roadway using established industrial routes during normal business hours. Transportation volumes, routing considerations, and associated risk are appropriately evaluated through required environmental and permitting assessments, rather than through the rezoning process itself.

What routes will these trucks take through residential areas? Include maps and traffic-impact modeling.

The preferred routing for truck shipments, including hazardous materials, would utilize the currently designated truck route for the site.

More broadly, truck routing and traffic impacts are typically evaluated through the appropriate transportation and environmental assessments (and, where applicable, permitting/NEPA documentation), and the rezoning action itself is a land-use compatibility determination. Given the relatively low incremental increase in truck traffic previously discussed, the transportation effects are expected to be manageable and are best addressed through those technical reviews rather than treated as a controlling land-use criterion.

How would this affect current traffic? How many additional trucks on the road per year, accounting for deliveries to the facility, trucks taking waste out of the facility, out of town workers being brought in, etc.

During construction, which will run until October 2027, for the existing site area and until February 2030, for the process areas in the proposed rezoning area, there will be increased traffic for trucks, including dump trucks and other trade-specific trucks. All anticipated traffic for large trucks, with non-hazardous shipments, will be approximately four per day.

Ongoing traffic impacts from the NNSA HPDU project are expected to be modest and primarily associated with routine deliveries and outbound waste shipments. Based on conservative planning assumptions, total logistics for the scope are estimated to add up to approximately four truck trips per operating day. Using approximately 200 operating days per year, this represents up to roughly 800 additional truck trips annually. Within that total, hazardous-material shipments are estimated to average approximately 1.6 truck trips per operating day (inbound and outbound), or about 320 hazardous-material truck trips per year, with the remainder consisting of non-hazardous deliveries and outbound shipments. Actual truck traffic is expected to be less than these upper-bound estimates during typical operations. These volumes are relatively low in the context of regional highway traffic and are appropriately evaluated through transportation

and environmental assessments rather than treated as a controlling land-use factor for rezoning.

With respect to workforce impacts, there has been public concern that the project will rely heavily on out-of-town labor. The plan is to staff the operation locally, with the company expecting to hire the vast majority of approximately 175 positions required to complete initial production activities by the end of 2027 from within Washington County. There will be ~20 additional positions required once the operation moves to full production.

In addition, many contractors supporting the project are expected to be locally or regionally based, further limiting incremental traffic associated with commuting. As a result, workforce-related traffic is expected to resemble normal local commuting patterns rather than large-scale transport of out-of-town workers. Temporary use of specialized contractors, where required, would be limited in duration and would not represent steady-state operations.

Given the BWXT's hiring need in Jonesborough from the local workforce, we urge local residents to continually monitor the BWXT careers page and stay aware of local job fairs and hiring campaigns.

[Careers - | People Strong. Innovation Driven.](#)

What is the emergency-response plan for a transportation accident? Which local agencies have radiological-incident training?

BWXT's emergency response approach for a transportation accident is built around the standard DOT hazardous materials framework (carrier emergency procedures, immediate notification/911, scene control, and Unified Command/ICS), with escalation to the appropriate state technical authorities for radiological support. In the event of an accident, the carrier and responders use established hazmat protocols to isolate the area, protect the public, identify the material from shipping papers/placards, and implement spill control and recovery using the Emergency Response Guidebook approach and local incident command. For radiological materials, Tennessee has dedicated regulatory and response capability through TDEC's Division of Radiological Health, which explicitly includes responding to accidents involving radiation as part of its mission.

Locally, Washington County has hazmat response capability coordinated through the Washington County/Johnson City Emergency Management Agency and the WC/JC Haz-Mat response team (Johnson City Fire Department in conjunction with Washington County EMA), which responds to transportation accidents and explicitly includes CBRNE-type incidents in its mission set. In addition, Northeast Tennessee is supported by a regional accredited hazardous materials response capability through the Kingsport Fire Department Hazardous Materials Response Team, which is identified as a regional team for Tennessee Homeland District One (which includes Washington County).

On radiological incident training specifically, BWXT has included a task in the scope to provide site and material specific training to the responsible local agencies prior to production start-up, so responders are familiar with the exact materials, packaging, and initial actions expected for

this project. In parallel, the State of Tennessee provides standardized radiological response training through TEMA (including MERRTT and TEMA Radiological Monitoring) that is available to responders. Because response capabilities and certifications can vary by agency and over time, BWXT's plan is to coordinate training and preparedness with the relevant local responders and the appropriate state agencies (including TEMA and TDEC Radiological Health) so that the local response posture is aligned with the specific transportation scenarios associated with this project.

Understanding that response capabilities and certifications may vary across agencies and can evolve over time, BWXT is dedicated to collaborating with local responders and relevant state agencies, including TEMA and TDEC Radiological Health. This teamwork ensures that the local response framework is well-aligned with the specific transportation scenarios associated with our project, reinforcing our steadfast commitment to the safety and well-being of our community.

Has BWXT funded or committed to funding upgrades for local emergency services? If not, why not?

At this time, BWXT has not committed to funding capital upgrades to local emergency services facilities or equipment as part of this project. BWXT will discuss requirements with local agencies and work with the appropriate authorities to ensure compliance and any necessary equipment is on hand

BWXT has included specific scope to support emergency preparedness through training, including providing process and material specific training to responsible local agencies prior to production start-up. This training is intended to supplement existing hazardous materials and radiological response capabilities by ensuring responders are familiar with the specific materials, packaging, and response considerations associated with this project.

This strategy aligns with standard industrial practice, where emergency response agencies maintain baseline response capability and project sponsors support preparedness through coordination, information-sharing, and targeted training. BWXT will continue to coordinate with local and state agencies, including those with radiological oversight responsibilities, to ensure appropriate preparedness consistent with regulatory expectations.

We will also commit to conducting annual practice drills with the local response organizations to ensure everyone remains fully trained and prepared in the chance a real activation is required.

BWXT understands that the safety of our community is paramount, and we are dedicated to fostering a strong partnership with local agencies to ensure the highest standards of emergency preparedness and response.

What is the maximum quantity of depleted uranium that may be stored on site? Is the figure of 800,000 metric tons accurate? If yes or no, please give the maximum quantity.

The figure of 800,000 metric tons is not accurate, nor is it even close to the quantities associated with this site or this project. That number appears to reflect a mischaracterization of total, cumulative national level depleted uranium inventories, rather than any site-specific storage capacity or operational plan.

Specific limits on the quantity of depleted uranium that may be stored on site are not publicly disclosed for national security and safeguard reasons and are managed through applicable federal and state regulatory frameworks. Storage quantities are governed by licensing, material control and security requirements that are outside the scope of a local rezoning determination and are not established through the zoning process.

The continued circulation of this 800,000 metric ton figure is another example of erroneous information in the public discourse that does not reflect the highly regulated, site-specific reality of the proposed operations and current operations at the site. Storage quantities at the site are bounded, controlled and subject to strict regulatory oversight, and do not resemble the large-scale stockpile numbers being referenced publicly.

Because material quantities are subject to security controls and regulatory review, they are appropriately addressed through the applicable licensing and oversight processes, rather than through land-use proceedings. The rezoning decision should therefore be based on land-use and planning criteria, with the Washington County Regional Planning office staff recommending rezoning as an appropriate land-use decision.

Will any form of DU (i.e. U_{308} , UF4, or any other uranium and uranium derivative materials), or any other toxic chemicals (such as Hydrogen Fluoride, KOH, KF, etc) be stored outdoors? If so, what is the containment and inspection schedule?

Certain non-radiological hazardous materials may be stored outdoors, but only within engineered containment systems specifically designed for that purpose and sited well outside identified flood zones. As described in other answers, outdoor bulk chemicals (such as acids, bases or slurries) are stored in compatible tanks or containers located within diked and curbed containment areas sized to capture the full contents of the vessels plus precipitation during severe storm events. These systems are passive in nature, do not rely on operator action, and are designed to remain effective under extreme weather conditions, including heavy rainfall, thereby preventing releases to soil, groundwater or surface waters.

Depleted uranium and uranium-bearing materials are not stored outdoors. These materials are handled and stored indoors within controlled facilities subject to applicable radiological, security and material accountability requirements. The siting of these facilities outside FEMA-designated flood zones further reduces the potential for flood-related impacts and reflects modern industrial and floodplain management practices.

Inspection and maintenance of outdoor hazardous material storage areas are conducted in accordance with applicable regulatory requirements and permit conditions, which typically include routine operator inspections, documented periodic inspections and corrective-action requirements. As an example, inspection programs are commonly required under EPA and TDEC regulations governing hazardous materials management, spill prevention and stormwater controls, as well as OSHA and DOT-related requirements where applicable. Inspection frequencies and reporting requirements are established and enforced through the permitting process, rather than through rezoning.

Taken together, the combination of flood-zone avoidance, engineered secondary containment, indoor storage of radiological materials and regulator-mandated inspection programs provides a robust and layered approach to hazardous-materials storage that is protective of nearby waterways and surrounding land uses.

What is the corrosion-rate data for the storage drums in this climate?

Drums will be utilized for a limited number of materials, with the most notable being uranium feedstock and intermediate product. These drums will exclusively be stored when loaded in indoor locations. As a result, the relevant corrosion mechanism is indoor atmospheric corrosion, rather than corrosion driven by regional climate, precipitation or flood exposure. The local outdoor climate does not control drum integrity in this case.

In addition, long-term storage of materials is not part of this project scope. Drums are used as interim containers to support material handling, staging and shipment to the site, rather than for extended on-site storage over many years. Because materials are not intended to remain in drums for prolonged durations, the opportunity for corrosion to develop to any meaningful extent is inherently limited. This operational characteristic further reduces corrosion risk beyond what would be expected even under controlled indoor storage conditions.

Industry standards addressing atmospheric corrosion, such as ISO 9223 (Corrosion of metals and alloys – Corrosivity of atmospheres), classify dry, indoor industrial environments as very low to low corrosivity categories. In these environments, first-year corrosion rates for carbon steel are minimal and progress slowly over time. Corrosion in indoor settings is primarily driven by persistent surface moisture or condensation, which is minimized when drums are stored indoors, kept off the floor, and protected from repeated wetting cycles.

The solid or solidified nature of the contents further reduces corrosion potential. The absence of free liquids eliminates internal corrosion mechanisms and limits external chemical interaction with the drum wall. This is a well-recognized basis for extended container service life in regulated industrial and radiological applications.

Drum storage areas are subject to routine inspection and maintenance requirements consistent with established regulatory and industrial practices. For example, federal container-management standards reflected in EPA hazardous-material and hazardous-waste frameworks require regular inspections for signs of corrosion, deterioration or leakage, with corrective action taken if any condition is identified. In practice, any drum showing degradation would be repaired, overpacked or replaced well before integrity could be compromised.

To summarize, corrosion is not a meaningful factor based on recognized corrosion standards (e.g., ISO 9223), indoor controlled storage, solidified contents, routine inspection requirements and the fact that long-term storage is not contemplated under this scope. This combination represents a conservative, well-understood and widely accepted approach for managing solid materials in regulated industrial facilities.

How are Uranium, fluoride or other toxic compounds protected during flood, power loss, and fire events?

Uranium-bearing materials and other toxic compounds are protected through a defense-in-depth design that does not rely on any single system and is intended to remain protective during abnormal events such as flooding, power loss or fire. As a general protective measure, all process and storage buildings associated with the project are located outside identified flood zones and hazardous material storage is either indoors or within engineered, diked secondary containment areas that are physically separated from flood-prone portions of the property. This siting approach reduces flood exposure and prevents flood-driven migration pathways to surface water or groundwater.

During extreme rainfall, hazardous materials are protected by passive containment features (dikes, curbing, sumps, and contained rooms) that continue to function without operator action or electrical power. Process waste is also managed in a way that inherently reduces flood risk due to process liquids are not being discharged, and process wastes being solidified and shipped off-site, eliminating routine liquid process waste pathways that historically contributed to water contamination at legacy sites.

During a power loss, the facility's protection strategy emphasizes that uranium-bearing materials are handled and stored indoors in controlled areas, and releases are prevented primarily through physical containment (vessels, piping, containers, and secondary containment) rather than depending solely on active controls. Where active systems are used to further reduce consequence, such as negative-pressure ventilation and scrubber systems for HF areas, the design and operating basis pairs these systems with emergency power/backup capability and alarms as part of standard industrial practice. Operator procedures, training and abnormal-event response protocols are also designed to ensure safe configuration and rapid stabilization during power interruptions.

For fire events, protection is achieved through a combination of segregated storage, compatible materials of construction, and fire protection systems and response planning typical of industrial facilities handling corrosives and toxic materials. Uranium-bearing solids are stored in robust containers indoors, minimizing dispersibility compared to liquids, while chemicals that present acute inhalation hazards are stored with secondary containment and vapor mitigation features (including indoor containment and scrubber systems in the relevant areas).

Emergency response is supported by pre-planned procedures and coordination with local agencies and BWXT's scope includes providing site and material specific training to responsible local responders prior to start-up, which strengthens preparedness for low-probability, high-consequence scenarios.

Overall, the combination of flood-zone avoidance, passive secondary containment, elimination of liquid process discharges, engineered indoor controls (negative pressure/HEPA/scrubber where applicable) and trained response and emergency planning provides a conservative basis for protecting the public and environment during flooding, power loss and fire events.

How many years is this facility planning to be operational? What is the plan for DU if the facility closes or changes ownership?

The facility is planned to operate for multiple decades, consistent with its role in providing an enduring capability to support critical national security needs. While the current contract establishes a defined period of performance, the federal government has made clear that the underlying requirement for depleted uranium metal extends well beyond a single contract period. The facilities associated with this project are therefore designed and sited to support long-term industrial use, consistent with standard practices for government-sponsored strategic capabilities.

If operations were to closeout in the future, depleted uranium would not remain unmanaged on site. Any DU material present would be shipped to an appropriate licensed facility or disposition pathway, in accordance with applicable regulatory requirements. As previously discussed, lifecycle considerations, including decontamination and decommissioning, are incorporated into project planning and contract scope, ensuring that materials and facilities are responsibly transitioned at the end of operations rather than abandoned or left in place.

In the event of a change in facility ownership, operations involving depleted uranium could not continue under the existing authorization. A new owner would be required to obtain the appropriate licenses and regulatory approvals before possessing or processing DU, consistent with NRC Agreement State requirements administered by TDEC and other applicable authorities. This requirement ensures continuity of regulatory oversight and prevents unauthorized possession or use of regulated materials.

(Intentionally left blank)

V. Material, Chemistry Control, Process, and Scope

What is the maximum U-235 assay of any uranium material that will be received, stored, processed, or generated at this facility — now or under any foreseeable modification?

The maximum U-235 assay of any uranium material that can be received, stored, processed or generated at this facility is Natural Uranium. Natural Uranium is found in the rock and soil of the Appalachian Mountains and surrounding areas specifically in granite, soil and shale. It is generally safe to be around in nature if you are hiking a trail, fishing waterways or enjoying a beautiful sunset from a mountaintop.

Natural Uranium has a U-235 concentration of 0.711%. The material that will be processed for the High Purity Depleted Uranium project has a U-235 assay characterized as Depleted Uranium. Depleted Uranium refers to Uranium that has a U-235 concentration that is less than Natural Uranium (< 0.711%). Depleted Uranium has an average U-235 concentration between 0.2 and 0.3% making it significantly less radioactive than the uranium found in nature. "High Purity" means that non-uranium material has been separated out. It does not refer to the uranium assay (i.e., U-235 content) in any way. By comparison, the low enriched uranium used in commercial nuclear energy reactors is enriched to an assay of 5% U-235.

The BWXT Ordnance Tennessee site is permitted to have no more than natural uranium under the Tennessee Department of Environment and Conservation regulations.

There are no plans now or in the foreseeable future to receive, store, process or generate any uranium material that is above a Natural Uranium assay. Any site that receives, stores, processes or generates uranium above Natural Uranium is regulated by the Nuclear Regulatory Commission, which would require a license under their regulations. The BWXT Ordnance Tennessee site does not possess nor plan to possess a license under the Nuclear Regulatory Commission.

Will uranium hexafluoride (UF₆) be received, generated, stored, or processed onsite at any time? If yes, please specify what forms (solid, heated solid, gas) and for what duration.

Uranium Hexafluoride (UF₆) will NOT be received, generated, stored or processed on site. The material received will be in the form of Uranium Oxide. Uranium Oxide is a solid material that has a consistency of ash or sand. This choice is part of our commitment to maintaining a safe and secure operation for the community.

What is the maximum credible HF release scenario, detection threshold, response time, and offsite impact radius?

The NEPA evaluation process incorporates a public comment period where the (hydrofluoric acid) (HF) release scenario, detection threshold, response time and offsite impact radius will be available to the public.

The maximum credible HF release scenario, detection threshold, response time and offsite impact radius are established through process design and process hazard analysis and

modeling activities that are then reviewed under the applicable state and federal permitting, along with the NEPA review process that follows the rezoning step and are independent of rezoning approval.

Rezoning is a threshold land-use determination that establishes whether the proposed use is appropriate for the location, which the Washington County Planning Office provided in the recommendation for approval of the rezoning request. Completing rezoning prior to permitting and NEPA review is a logical and standard sequencing step, because permitting agencies require confirmation that a proposed activity is allowed under local zoning before undertaking detailed technical reviews.

Once zoning is established, a credible HF release scenario, detection threshold, response time and offsite impact radius will be evaluated through amended air and hazardous materials permits, as well as through NEPA evaluation. As part of these reviews the release scenario, detection limits, response times and impact radius are assessed against facility design, safety systems, environmental impacts and public health protections. Permits and environmental assessments result in enforceable limits that govern how HF may be stored and utilized on site.

At this stage of the design process, it would be speculative and likely inaccurate to attempt to disseminate specific data related to an HF release scenario, detection threshold, response time and offsite impact radius outside of those processes. To the point of the question, we recognize the importance of proper design, OSHA 1910.119 Process Safety Management compliance and operational safety in addition to emergency preparedness plans that are well thought out, planned with local emergency response agencies, and practiced. These are all areas in which BWXT personnel are well-versed to ensure the safety of our employees, the public and the environment.

Determining the specifics for HF release scenarios involves thorough studies and regulatory processes that prioritize community safety. While these details have not been established yet, they will be developed as part of our obligation to state and federal standards. We will ensure transparency with the community during this evaluation, including opportunities for public comment.

To that end, the NEPA evaluation process incorporates a public comment period. The HF release scenario, detection threshold, response time and offsite impact radius will be available to the public during this process.

Does the facility contain — or is it physically capable of containing — any isotope separation equipment (centrifuges, aerodynamic separators, laser systems)? If so, please specify which types & the purpose of each specific type used in this facility.

The facility does NOT contain, nor is it capable of containing from a licensing standpoint, any isotope separation equipment (centrifuges, aerodynamic separators, laser systems). Any isotope separation processes would require a license under the Nuclear Regulatory Commission, which this facility does not possess, and we do not plan to acquire.

There has been confusion regarding uranium enrichment based on other announcements regarding uranium enrichment being performed in Tennessee by BWXT. Centrifuges will be produced in Oak Ridge, Tennessee, and future uranium enrichment is planned at Nuclear Fuel Services in Erwin. The announcement can be found at:

[BWXT Awarded Contract for NNSA Defense Fuels Program - | People Strong. Innovation Driven.](#)

Again, no isotope separation is planned for BWXT Ordnance Tennessee in Washington County, Tennessee.

Do building dimensions, foundations, electrical capacity, or ventilation systems preclude future enrichment equipment without rezoning and relicensing?

Any enrichment would require relicensing under a Nuclear Regulatory Commission (NRC) license, which BWXT's Jonesborough site does not possess and does not plan to acquire.

The facilities at BWXT's Jonesborough site have not been designed for uranium enrichment.

Uranium enrichment will NOT occur at BWXT's Jonesborough site in Washington County, Tennessee.

Would switching from depleted uranium feedstock to enriched uranium require new zoning, permits, and public hearings — yes or no?

Yes, any change in uranium feedstock would require relicensing under a Nuclear Regulatory Commission (NRC) license, which BWXT's Jonesborough site does not possess and does not plan to acquire. Although any change in our operations may not require rezoning, it would necessitate new permits and community engagement; however, we currently have no intention of changing our uranium feedstock.

Does BWXT agree that describing this facility as “HALEU-related” would be inaccurate under current plans and approvals?

BWXT agrees that describing this facility as HALEU-related is grossly inaccurate and clearly misinformation.

It is important for us to be clear that BWXT's Jonesborough site is not involved with HALEU-related operations. We prioritize transparency to ensure our community knows what to expect.

HALEU, High-Assay Low-Enriched Uranium, is a type of nuclear fuel that contains uranium-235 with an enrichment level between 5% and 20%.

BWXT's Jonesborough site is only permitted to possess material up to Natural Uranium with an enrichment less than 0.711%. BWXT's Jonesborough site does not possess nor plans to possess any nuclear fuel at any assay level.

BWXT's Jonesborough site would require a Nuclear Regulatory Commission license to possess HALEU material, which BWXT's Jonesborough site does not possess and does not plan to acquire.

A recent news article that mistakenly associated the expansion project with HALEU has since corrected the article at our request.

Link: [Did BWX Technologies' \(BWXT\) Tennessee Zoning Setback Expose Deeper Defense Strategy Risks? - Simply Wall St News](#)

Is there any corporate plan, contingency, or option — formal or informal — to introduce HALEU processing at this location in the future?

No. Our focus is on responsibly managing the materials we are permitted to handle, always prioritizing safety and compliance.

HALEU, High-Assay Low-Enriched Uranium, is a type of nuclear fuel that contains uranium-235 with an enrichment level between 5% and 20%.

BWXT's Jonesborough site is only permitted to possess material up to Natural Uranium with an enrichment less than 0.711%. BWXT's Jonesborough site does not work with nuclear fuel at any assay level, and we strive to provide clear and accurate information to our community.

BWXT's Jonesborough site would require a Nuclear Regulatory Commission license to possess HALEU material, which BWXT's Jonesborough site does not possess and does not plan to acquire.

(Intentionally left blank)

VI. Economic Impact and Job Creation

How many net new jobs will be created for local residents? BWXT claims 175 jobs. Yet the DOE EA-2252 Final claims “up to 40 workers on site during the 24-month construction period”, “...prior to the completion of construction, would require 10 additional employees.” Please exclude transfers of existing BWXT employees and temporary contractors.

The project is expected to create approximately 175 permanent jobs by the end of 2027, with an additional 15 long-term positions added thereafter, for a total of approximately 190 operational jobs. These positions include management, operations, health and safety, engineering support, quality, and skilled technical roles. The vast majority of these jobs are expected to be filled by local residents, and BWXT’s proposal for this work specifically relied on the availability of a qualified local workforce with the skills and abilities necessary to support the operation.

Some public commentary has cited employment figures from DOE EA-2252 to suggest that only a small number of jobs would be created. This is another example of a misunderstanding circulating in the public space. DOE EA-2252 evaluated the pilot-plant contract and the staffing figures in that document, including up to ~40 workers during the construction period and ~10 workers following construction, are specific to that pilot-scale scope. Those figures are not representative of the current NNSA production mission, which involves expanded facilities, sustained operations and a significantly larger permanent workforce. As previously discussed, the current scope will be subject to its own NEPA review, where employment impacts are appropriately evaluated.

Due to known hiring needs at other BWXT locations in the region, transfer of BWXT employees is not a practical option for staffing this project. BWXT will be utilizing the local workforce and welcomes new employees to the team.

In addition to direct employment, the project will support ongoing contractor opportunities, most of which are expected to be filled by local or regional firms, including construction trades, maintenance services, logistics and specialized technical support. These contractor roles represent additional indirect employment beyond the permanent workforce.

Washington County has experienced job losses associated with the departure or downsizing of industrial employers in recent years, particularly in skilled and technical sectors. While no single project offsets all prior losses, the creation of approximately 190 stable, long-term industrial jobs, together with associated contractor opportunities, represents a meaningful contribution toward offsetting those losses and strengthening the County’s industrial employment base.

Taken together, the employment impacts of the current project should be evaluated based on the actual NNSA production scope, rather than on pilot-plant staffing figures that are being misapplied in public discourse.

Given our BWXT Ordnance Jonesborough's hiring need from the local workforce, we urge locals to continually monitor the BWXT careers page and stay aware of local job fairs and hiring campaigns.

[Careers - | People Strong. Innovation Driven.](#)

What percentage of the workforce will require specialized clearances or training not available locally?

Most of the workforce required to support HPDU operations requires skill and trade training that is available through local and regional training resources. Positions include process operations, maintenance, instrumentation, health and safety, quality, supervision, and related skilled roles that align with existing workforce capabilities in Washington County and the surrounding area. There are also positions for degreed individuals in engineering, quality assurance and other relevant fields.

Where project-specific training is needed, BWXT has agreements and plans to expand these offerings with local trade schools and training institutions to establish or enhance training programs so that these skills can be developed locally. This approach supports local hiring and ensures that any specialized training requirements are met without reliance on out-of-area labor.

Specialized security clearances are not a condition of employment for positions associated with this project. As a result, clearance requirements are not expected to limit local participation in the workforce. Overall, the staffing approach is intended to rely on local residents and locally available training pathways, with training tailored as needed to support safe and effective operations.

What is the projected local tax revenue for Washington County after accounting for incentives and abatements?

BWXT has not discussed or requested tax incentives, abatements or special tax treatment with Washington County in connection with this project. As a result, there are no abatements to account for in considering the project's contribution to the local tax base. The facility and associated operations will be subject to the normal applicable local and state tax structures, consistent with other industrial operations in the County.

While precise tax revenue projections are not provided at this stage, the project represents a significant long-term economic presence. The underlying contract, valued at approximately \$1.6 billion over a ten-year period, supports sustained operations, capital investment, and a stable workforce. The creation of well-paying, long-term industrial jobs contributes to local tax revenue through property taxes, sales taxes, and other indirect mechanisms associated with employee spending and business activity.

In addition to direct tax contributions, the project is expected to generate secondary economic benefits through local hiring, use of regional contractors and suppliers, and increased household spending by employees. These effects stimulate the local economy and contribute to the County's overall fiscal health without requiring special incentives or abatements.

The project will provide a positive and sustained contribution to Washington County's tax base and economic activity, driven by long-term operations, competitive wages, and integration into the local workforce and business community.

What is the projected cost to the county for infrastructure upgrades, emergency services, and long-term environmental monitoring?

At this time, no material costs to Washington County have been identified for infrastructure upgrades, emergency services or long-term environmental monitoring because of this project. The project is designed to utilize existing infrastructure and services, and no requests have been made for County-funded expansions or upgrades to support operations.

With respect to transportation, a roadway improvement on Old State Route 34 is anticipated to be addressed through TDOT, consistent with state transportation planning and maintenance responsibilities. This improvement is not a County-funded infrastructure request associated with the rezoning, and it reflects normal roadway planning rather than a project-specific burden on the County.

No additional infrastructure upgrades across the County have been identified as necessary to support the project, and no upgrades to emergency services facilities or equipment have been requested. Emergency response preparedness is being addressed through coordination and training, rather than capital investment, as previously answered. Similarly, long-term environmental monitoring is governed by applicable regulatory programs and is overseen by the appropriate state and federal agencies, rather than funded or managed by the County.

BWXT looks forward to working collaboratively with Washington County and local stakeholders as an active and continued participant in the community. The company remains committed to supporting safe operations, regulatory compliance, and responsible engagement in a manner that benefits both the project and the County as a whole.

Has BWXT conducted an independent economic impact study? If so, provide it. If not, why not?

BWXT has not conducted an independent economic impact study specific to this rezoning request. Such a study is not required and is not necessary for a local rezoning decision, which is intended to evaluate land-use compatibility, consistency with adopted plans and appropriateness of the proposed zoning classification, rather than to quantify economic effects.

Economic impact studies are generally undertaken to inform economic development policy decisions, incentive negotiations or broader regional planning efforts. In those contexts, the primary beneficiaries of an economic impact study are the local government, economic development authorities and the public, as the analysis is used to guide public-sector decision-making and resource allocation. Accordingly, the responsibility for commissioning and owning such studies typically rests with government entities or development authorities, not with a private applicant seeking a zoning classification that is already compatible with adjacent land uses per the Washington County Planning office recommendation.

In this case, the rezoning request is supported by clear land-use factors, including adjacency to existing industrial zoning, use of existing industrial infrastructure, and appropriate separation from lower-intensity surrounding uses, which form the proper basis for the Planning Office's recommendation. While the project is expected to generate positive economic activity through long-term employment, local contracting, and sustained operations, quantifying those impacts through a formal economic study is outside the scope of, and not a prerequisite for, the rezoning determination.

If desired, Washington County or a regional economic development organization could independently evaluate the broader economic impacts of the project as part of its own planning or policy objectives.

How will BWXT prevent nearby property owners from losing value? Will you compensate them for the difference in property values should a zoning change occur?

Local zoning decisions cannot include commitments to guarantee property values or compensate nearby property owners for hypothetical changes in value as the zoning decision is a land-use decision. Property values are influenced by a wide range of factors, including market conditions, interest rates, school quality, infrastructure, neighborhood trends and overall economic activity, and are not solely determined by adjacent land use.

This facility is sited consistent with planning criteria, including outside of the flood zone present on the site, adjacent to existing industrial zone on the property, and has engineered controls for emissions, noise, and hazards.

Given these factors, coupled with job creation and increased local business activity, growth in property values in the community is a possibility, particularly considering that Washington County has experienced industrial job losses in recent history.

With respect to compensation, there is no basis for requiring a private company, or a county through a rezoning action, to compensate individual property owners for changes in market value that may or may not occur. Property owners always retain the option to sell at market value, to obtain independent appraisals or to seek recourse only if a property is taken through eminent domain, which is NOT the situation for this rezoning action.

(Intentionally left blank)

VII. Regulatory Compliance and Transparency

Will BWXT commit to third-party environmental audits? And will those audits be public?

BWXT will comply fully with all required regulatory audits, inspections and reporting obligations applicable to the facility. These audits and inspections are conducted by the appropriate state and federal authorities under established regulatory frameworks and are the legally recognized mechanisms for evaluating environmental performance, radiological safety and compliance. Oversight of environmental and radiological matters is addressed through these regulatory processes, not through zoning conditions.

BWXT has not committed to voluntary third-party environmental audits beyond what is required by regulation, and such a commitment is not relevant to, nor a proper consideration for, a land-use rezoning decision. Rezoning is intended to evaluate land-use compatibility, consistency with adopted plans, and suitability of the zoning classification. It is not a vehicle to impose operational oversight mechanisms, environmental monitoring regimes, or audit commitments that are already governed by state and federal regulatory authorities.

To be specific, radiation and radiological safety are not functions of local zoning authorities and are not valid bases for a zoning decision. Regulation of radioactive materials, radiation exposure and radiological safety is expressly vested in state and federal regulators under established statutory authority, including Tennessee's role as an NRC Agreement State. Local zoning bodies do not set radiological standards, do not evaluate radiation dose and do not regulate the handling or possession of radioactive materials. Those matters are preempted from local land-use authority and are addressed exclusively through licensing, permitting, inspection, and enforcement programs.

With respect to public commentary on BWXT's environmental and safety record, some materials presented by individuals in opposition to this critical project rely on selective references to isolated historical events, often drawn from entirely different facilities, different operations, or different regulatory contexts, and present them as indicative of current operations. This approach is misleading and analytically unsound. It disregards the fact that BWXT operates under continuous regulatory oversight and that environmental and radiological performance must be evaluated by the appropriate regulators based on current, site-specific information, rather than on out-of-context historical references.

Ultimately, environmental compliance, radiological safety and operational oversight are matters of regulatory jurisdiction, not zoning discretion. The rezoning decision should therefore remain focused on lawful land-use criteria, rather than on requests for additional audits, radiological judgments or narratives built from selective and unrelated information.

To gain knowledge towards BWXT's commitment to sustainability, we welcome the public to review our latest sustainability report: [2025-SR_Interactive.pdf](#)

What is the company's history (BWXT) at all sites — and the site's history (AoT/ BWXT, Facility ID 90-0047) — of environmental, regulatory, and OSHA violations? Please provide a complete list from 1980 to present and categorize according to site locations and years.

Requests for a complete, multi-decade listing of environmental, regulatory and OSHA actions across all BWXT sites are not relevant to a local rezoning decision and fall outside the scope of land-use authority. Rezoning determinations are intended to evaluate land-use compatibility, adjacency, infrastructure suitability and consistency with adopted plans, not to serve as a forum for compiling or adjudicating the regulatory history of a company's unrelated facilities over multiple decades and jurisdictions.

To the extent parties are interested in the regulatory record at different site locations, much of that information is available via public records through the corresponding agencies. We would direct the parties there.

For the Jonesborough site, our team has achieved exceptional safety performance over the past decade, demonstrating a strong commitment to the health and safety of its workforce and the surrounding community. This summary provides an overview of the facility's Total Recordable Incident Rate (TRIR) and Days Away, Restricted or Transferred (DART) rates, showing how our safety record compares to both industry averages and regional statistics.

Total Recordable Incident Rate (TRIR)

- **Last 10 Years Average:** 1.8
- **Last 3 Years Average:** 0.73
- **Industry Average TRIR:** Approximately 3.0
- **East Tennessee Average TRIR:** Approximately 3.0

The average TRIR for the Jonesborough facility over the past 10 years was 1.8, significantly lower than the industry average of approximately 3.0, demonstrating a strong commitment to safety. Notably, over the last three years, our TRIR has improved to an impressive 0.73, reflecting our robust safety improvements and culture of continuous training and performance enhancement.

Days Away, Restricted, or Transferred (DART) Rate

- **Last 10 Years Average:** 1.49
- **Last 3 Years Average:** 0.73
- **Industry Average DART:** Approximately 1.8
- **East Tennessee Average DART:** Approximately 2.0

For the DART rate, the Jonesborough facility reported an average of 1.49 over the past decade, which is in line with, but still lower than, the industry average of approximately 1.8. However, in the last three years, our average DART rate improved to 0.73, significantly bettering both industry and regional averages, which typically hover around 2.0. This reduction showcases our commitment to ensuring workforce safety.

Cumulative BWXT DART and TRIR Comparison

When comparing the cumulative DART and TRIR rates of BWXT across all our facilities over the same time periods, the statistics are as follows:

- **Average DART Rate for BWXT (Last 3 Years):** 0.47
- **Average TRIR for BWXT (Last 3 Years):** 0.81

These figures highlight our commitment to safety and reflect robust performance across the company. BWXT has made significant strides in fostering a culture of safety, health, and environmental responsibility. For more detailed information regarding our safety performance and initiatives, please refer to the BWXT Sustainability Plan.

The Jonesborough facility's safety performance illustrates not only our commitment to operational excellence and regulatory compliance but also our proactive approach in prioritizing the safety and well-being of our employees and the community. The notable improvements in TRIR and DART rates over the past few years, coupled with our strong historical performance, affirm our position as a leader in safety within the industry. We remain dedicated to sustaining these positive trends through continuous training, improvement initiatives, and a strong safety culture.

Will BWXT commit to a community oversight board with access to operational data?

BWXT has an established practice of community engagement through advisory and outreach mechanisms in Northeast Tennessee and looks forward to working with the people of Washington County as part of that ongoing approach. These forums are intended to support dialogue, share appropriate information and allow community members to raise questions and concerns in a constructive setting.

At the same time, BWXT cannot commit to providing direct access to operational data outside of established regulatory processes. Access to operational, environmental and radiological data is governed by state and federal regulatory frameworks, and in many cases is subject to security, safeguards, and proprietary restrictions. Oversight of such data is therefore appropriately conducted by the legally authorized regulatory agencies rather than through local zoning conditions or community boards.

Rezoning remains a land-use determination, not an operational governance mechanism. While operational data access cannot be provided, BWXT remains committed to engaging with the community, soliciting input, and being a responsible local partner through appropriate, established channels consistent with regulatory and security requirements.

VIII. Precedent and Long-Term Liability

If contamination occurs, who is financially responsible for remediation? BWXT, the Department of Energy, the Department of Defense, or the county?

In the unlikely event that contamination was to occur, Washington County would not be financially responsible for remediation. Responsibility for environmental protection, cleanup, and

any required corrective action rests with the regulated entities under applicable federal law and contract terms, not with the County through a rezoning action.

For radiological matters, this project is covered by the Price–Anderson Act, which establishes a comprehensive federal liability and indemnification framework for nuclear-related activities conducted under government authorization. Under Price–Anderson, responsibility for radiological incidents is clearly defined, providing financial protection for the public and certainty regarding liability, and ensuring that claims are addressed through a federal statutory action rather than local government action. As a result, radiological liability and financial responsibility are not land-use issues and are not within the jurisdiction of local zoning authorities.

From an operational and contractual standpoint, BWXT is responsible for complying with all applicable environmental and radiological regulations, and the scope of work includes planning for decontamination and decommissioning (D&D) should it ever be required. These lifecycle obligations are standard for regulated nuclear and industrial facilities and ensure that operations do not result in unmanaged or abandoned conditions at the end of use. In addition, any federal role, such as indemnification under Price–Anderson or government-directed disposition, would be governed by federal law and contract, not by the County.

Assertions that the site could become a “Superfund” site because of the rezoning are not grounded in the regulatory or contractual reality of the project. Modern facilities operating under current environmental and radiological regulatory frameworks, with elimination of liquid process discharges, engineered containment, continuous oversight, and defined end-of-life obligations, do not resemble the legacy conditions that gave rise to historical Superfund sites. References to Superfund in this context reflect fear-based speculation rather than an accurate assessment of risk or responsibility.

In summary, the County bears no financial responsibility, radiological liability is addressed through federal law (Price–Anderson), environmental compliance and any required remediation are the responsibility of the regulated operator and the federal government as applicable, and these matters are not appropriate considerations for a local rezoning decision, which is limited to land-use compatibility.

What is the estimated cost of cleanup for a worst-case radiological or chemical incident?

There is no defined or meaningful cost estimate for a hypothetical “worst-case” radiological or chemical incident associated with this project. Such scenarios are, by definition, highly speculative, and their potential impacts, response actions, and associated costs depend on a wide range of variables, including the nature of the material involved, the quantity, the location, the response timeline, and the regulatory framework applied. As a result, assigning a specific cleanup cost in advance would be misleading and not technically sound.

For radiological matters, financial responsibility and response are addressed through established federal statutory and regulatory frameworks, including the Price–Anderson Act, which governs liability and compensation for nuclear-related incidents and provides a structured mechanism for managing response and claims. For chemical incidents, response and remediation are governed by state and federal environmental regulations, emergency response

protocols and site-specific corrective action requirements. In both cases, costs, if any, are determined after the nature and scope of an actual event are known, not through speculative pre-estimates.

Importantly, the project is designed to prevent such incidents through engineered containment, elimination of liquid process discharges, indoor controlled operations, regulatory oversight and trained emergency response. Cleanup planning, decontamination and decommissioning considerations are incorporated into project and contract scope, ensuring that responsibility is clearly assigned if action is ever required.

Finally, estimating hypothetical cleanup costs is not a land-use determination and is not a criterion for rezoning decisions. Such matters fall within regulatory and contractual frameworks, where responsibilities and response mechanisms are clearly defined, rather than within local zoning authority.

Will BWXT post a bond or financial assurance to cover long-term environmental liability?

BWXT has not committed to posting a separate bond or standalone financial assurance instrument as part of this rezoning request, and such a requirement is not a local land-use matter. Financial assurance for environmental and radiological liability is governed by state and federal regulatory and contractual frameworks, not by zoning actions. Rezoning determinations address land-use compatibility and planning considerations, not financial assurance mechanisms for regulated activities.

For this project, appropriate contractual and regulatory mechanisms are already in place to address long-term environmental and radiological liability. These mechanisms include federal contract requirements, applicable licensing and permitting conditions, and statutory frameworks such as Price–Anderson for radiological matters, which together establish responsibility, liability coverage and response obligations. Where financial assurance is required by regulation, it is addressed through those regulatory processes with the appropriate authorities, rather than through local zoning conditions.

The question of posting a bond or other financial assurance is properly evaluated within the regulatory and contractual context, not through the rezoning process. The rezoning decision should remain focused on lawful land-use criteria, with environmental liability and financial assurance addressed through the established oversight systems designed for that purpose.

If contamination events cause loss of human life or loss to quality of life, will BWXT accept full responsibility? Will BWXT agree upon rezoning to a binding letter of intent to compensate Washington County and all residents affected?

We understand that concerns regarding liability and safety are important to the community. However, it is essential to clarify that the questions surrounding hypothetical worst-case scenarios are not appropriate within the context of a local rezoning decision. Rezoning is fundamentally a land-use determination, aimed at assessing the compatibility of proposed uses with existing zoning and land-use regulations, rather than a mechanism for preemptively adjudicating liability or assigning fault for potential future incidents.

Responsibility for ensuring public health, safety, and environmental protection is governed by comprehensive federal and state regulatory frameworks, which are separate from the zoning process. Specifically, for radiological matters, the Price–Anderson Act provides a federal liability and indemnification regime for nuclear-related activities authorized by the government, which addresses questions of responsibility and compensation in the unlikely event of a radiological incident. Similarly, environmental laws and regulations establish clear responsibility and remedies for any chemical or environmental impacts that may arise, ensuring accountability and safety through established enforcement mechanisms.

BWXT cannot agree to any binding commitments related to hypothetical loss of life or quality-of-life impacts as part of the rezoning process. Such commitments would not only be improper but also inconsistent with existing regulatory and liability frameworks. Liability determinations are made through established legal and regulatory processes, rather than through preemptive conditions associated with zoning approvals.

It is also important to emphasize that the design and operation of our facilities will adhere to modern engineering controls aimed at preventing any incidents. Key safety measures include:

- **Elimination of Liquid Process Discharges:** We will design the HPDU process to avoid routine liquid waste, which mitigates potential environmental risks.
- **Controlled Indoor Operations:** All activities will take place indoors within controlled environments to prevent exposure to hazardous materials.
- **Regulatory Oversight:** Our operations are subject to rigorous regulatory oversight from federal and state authorities, ensuring compliance with safety standards.
- **Defined End-of-Life Obligations:** We will have clear protocols in place for safely managing materials at the end of their lifecycle.

The suggestion that severe contamination events or loss of life are likely outcomes is unfounded and not supported by the rigorous safety designs and regulatory requirements in place.

Presenting such worst-case scenarios without considering the substantial safeguards we are implementing can lead to unnecessary fear and does not accurately reflect the risks associated with our operations.

In summary, while legitimate concerns about safety and environmental protection are crucial, liability and compensation matters are governed by federal and state law, not by the rezoning process. The County does not bear responsibility for speculative scenarios, and the rezoning should remain focused on lawful land-use criteria. BWXT is committed to safety and transparency as we move forward, ensuring that our operations align with the community's wellbeing and contribute positively to local interests

If the land is rezoned to M-2, what prevents future heavy-industrial tenants from operating there without community approval?

BWXT has no intention to sell the facility, or the land associated with this rezoning request. The property is being retained to support an enduring national security mission, and the rezoning is

sought to align the zoning classification with the intended long-term use by BWXT, not to create a speculative industrial real-estate opportunity.

Even if the land were zoned M-2, rezoning does not grant blanket permission for unrestricted industrial activity. Any future use of the property, by BWXT or by any other entity, would remain subject to local site-plan review, building permits, stormwater approvals and compliance with applicable codes and ordinances administered by the appropriate County offices. New buildings, expansions, or changes in use would require review and approval through established local processes, regardless of the zoning classification.

The argument that BWXT could subdivide the property and allow multiple unrelated heavy-industrial tenants to operate independently on small acreage parcels is impractical and inconsistent with how industrial operations function. Heavy industrial activities require integrated infrastructure, including security, utilities, access control, environmental controls and compatible operations. Fragmenting the site among multiple tenants would undermine these integrated systems and is not a realistic or economically viable industrial practice, particularly for regulated industrial operations.

Zoning classifications define allowable categories of use, not automatic approvals for specific activities. The presence of M-2 zoning does not eliminate local oversight, nor does it permit development without review. Any future industrial activity would still be evaluated against applicable land-development regulations, site-specific conditions, and regulatory requirements at the time it is proposed.

The rezoning aligns the property with its intended, owner-occupied industrial use, does not remove local control over future development, and does not create a realistic pathway for speculative multi-tenant heavy-industrial development as suggested by some public commentary.

(Intentionally left blank)

IX. Regarding Waste and the HPDU Processing

During the period corresponding with the HPDU pilot program (2021-2022), facility records indicate a significant increase in hazardous and radiological waste generation, rising from approximately 350 ft³ / 10 Ci per year to 3,500 ft³ / 115 Ci per year, before stabilizing at approximately 1,500 ft³ / 115 Ci per year. What specific processes, materials, or operational changes implemented during the HPDU pilot account for this marked increase in both waste volume and radiological activity? Based on these documented trends, what is the projected annual volume, radiological classification, and chemical composition of hazardous and radiological waste expected under full HPDU operations? Additionally, what is the anticipated off-site transport frequency for this waste, including shipment volumes per load and the destination treatment, storage, or disposal facilities?

The premise of this question is factually incorrect. The HPDU pilot plant program was not active during the 2021–2022 period cited. DOE EA-2252 was not finalized at the time, and it would not be possible to process during that period. As an example of the regulatory process, the site did not begin any construction or operational steps for the HPDU pilot plant program until that EA was finalized. Any hazardous or radiological waste generated during that timeframe occurred under existing permits and regulatory authorizations and remained within approved limits and fully compliant with all applicable regulations. There is no basis to attribute those waste quantities to HPDU pilot activities.

More importantly, detailed questions regarding historical waste volumes, radiological activity levels, chemical composition, or shipment quantities are not appropriate to a local rezoning determination. These matters fall within licensing, permitting, and regulatory compliance frameworks, which are specifically designed to evaluate and control waste generation, classification, and disposition. Consistent with this distinction, the Washington County Planning Office recommended approval of the rezoning based on land-use considerations, such as adjacency to existing industrial zoning, compatibility with surrounding uses, and the absence of spot zoning, rather than on operational or regulatory performance metrics.

With respect to future HPDU operations, projected waste volumes, radiological classifications, chemical composition, and off-site disposition have not been finalized and will be established through the required licensing, permitting, and NEPA evaluation processes. Those processes provide the appropriate technical and regulatory forums for reviewing waste management practices and transportation controls and result in enforceable requirements overseen by the proper authorities.

Regarding future HPDU operations, we anticipate that projected waste volumes, radiological classifications, chemical components, and off-site disposal methods will be determined through the required licensing, permitting, and NEPA evaluation processes. These processes are designed to provide rigorous and transparent reviews of waste management practices, ensuring that all requirements are enforceable and overseen by the appropriate authorities, thereby ensuring public safety.

We are committed to modern waste management and pollution prevention practices, specifically by designing the NNSA HPDU production scope to completely eliminate routine liquid process waste. Instead, waste will be solidified and shipped off-site for treatment, storage, or disposal at appropriately licensed facilities. This approach not only aligns with current best practices but also actively avoids introducing additional impacts to the local environment.

Regarding transportation, off-site waste shipments will occur at limited and controlled frequencies, consistent with the logistics information previously provided. Specifically, hazardous-material shipments are expected to average approximately 1.6 truck trips per operating day, equating to approximately 320 hazardous-material shipments per year, with total truck traffic, including non-hazardous deliveries and shipments, conservatively estimated at up to four truck trips per operating day during operations. These shipment frequencies are modest, occur on established transportation routes, and are evaluated and approved through regulatory and permitting processes, not through zoning.

In summary, the cited waste figures are not attributable to HPDU pilot operations, were permitted and compliant, and are not relevant to the rezoning decision. The rezoning request has been appropriately evaluated and recommended for approval by the Washington County Planning Office based on lawful land-use criteria, while HPDU waste generation, classification, and transportation will be addressed through established licensing and regulatory oversight mechanisms.

X. Safety Concern Due to Previous System Failure at AOT

In August 2004, a fire at the AOT facility resulted in a breach of filtration systems and an airborne radiological release, documented under NRC Event 40931. The proposed HPDU process relies on HEPA filtration and wet scrubber systems, each claimed to be 99% efficient, to control emissions including hydrogen fluoride (HF), which is the most acutely toxic and immediately dangerous chemical handled in this process. Given the prior fire-related failure at this facility, what specific engineering controls, redundancy, and fire-resilient design features are in place to prevent a similar failure? In the event of fire, thermal damage, power loss, or mechanical failure affecting HEPA or scrubber systems, what safeguards prevent uncontrolled release of HF and radiological material, and what assurances can be provided that such a failure would not pose a serious risk of injury or death to nearby residents?

The August 2004, fire at the Aerojet Ordnance Tennessee (AOT) facility (NRC Event 40931) occurred under a different operational and facility design context than that proposed for the new High Purity Depleted Uranium (HPDU) process. This incident involved a localized fire impacting ventilation components, leading to a minor airborne release remaining well within applicable regulatory limits. Importantly, there were no public injuries, and regulatory reviews confirmed that off-site dose consequences were significantly below acceptable thresholds.

For the new HPDU facilities, we are implementing state-of-the-art engineering controls, redundancy measures, and fire-resilient design features to ensure the highest levels of safety

and minimize risks to the surrounding community, particularly in regard to hazardous materials such as hydrogen fluoride (HF). Key safety features include:

- *Modern Fire-Mitigating Design Principles*: Facilities will be constructed using fire-rated materials and design practices that adhere to current codes and regulatory expectations. This includes physical separation of process areas to prevent the spread of fire.
- *Protected Ventilation Pathways*: We will ensure ventilation systems are protected and isolated to reduce the risk of fire-related incidents affecting filtration systems.
- *Automatic Detection and Suppression Systems*: Advanced fire detection and suppression systems will be installed throughout the facility to quickly identify and respond to any fire incidents.
- *Emergency Isolation Features*: In the event of a thermal or mechanical failure, emergency systems are designed to automatically isolate affected areas and prevent the release of hazardous materials.
- *Negative-Pressure Confinement*: All processes will be conducted in negative-pressure environments to contain any potential releases within designated containment areas.
- *Redundant Safety Systems*: The design of the HEPA filtration and wet scrubber systems will incorporate redundancy, including automatic isolation of ventilation segments, emergency shutdown protocols, and safe-state interlocks to prevent uncontrolled emissions.
- *Regular Safety Drills and Emergency Response Training*: We are committed to conducting regular emergency response drills with local agencies to ensure preparedness in the event of an incident.

Assurances regarding safety extend beyond our operations; they are enforced through rigorous regulatory processes. The design and safety features of the HPDU facilities will be thoroughly evaluated, reviewed, and regulated by state and federal authorities. This includes detailed safety analyses that assess credible fire, power-loss, and equipment-failure scenarios to ensure that any potential off-site impacts remain within protective limits for public health.

It is essential to clarify that the process of rezoning the land is focused on land-use compatibility and does not serve as a referendum on operational safety or the adequacy of our technical designs. Safety matters are governed by appropriate regulatory authorities that impose detailed safety requirements and enforceable permit conditions. The Washington County Planning Office has reviewed this rezoning request from a land-use perspective and has recommended approval, reflecting the compatibility of our operations with the surrounding community.

In summary, BWXT is dedicated to prioritizing safety and protecting the health of the community. Our comprehensive engineering controls and commitment to regulatory compliance will help ensure that our operations in Washington County do not pose a risk to nearby residents or the environment.

XI. New Manufacturing Codes

Following BWXT's recent acquisition of the Aerojet Ordnance Tennessee (AOT) facility, BWXT has claimed that the new High Purity Depleted Uranium (HPDU) production process is the "same thing that AOT has always done." Yet, the assignment of a new NAICS code 325180 for Other Basic Inorganic Chemical Manufacturing in the federal contract award documentation appears to paint a different picture. Please clarify why BWXT received this new code, how this new HPDU process aligns with this new code, as well as how this is in line with BWXT's public statements that this is "the same thing that AOT has always done."

The assignment of NAICS code 325180 (Other Basic Inorganic Chemical Manufacturing) in the federal contract documentation is an administrative classification used for contracting and reporting purposes, not a determination that the activity represents a fundamentally new or different land use. NAICS codes are selected based on how a contract's scope is categorized for procurement and data-tracking, and it is common for long-standing industrial activities to be assigned different NAICS codes as scopes evolve or are described differently for federal acquisition purposes.

The HPDU production process aligns with NAICS 325180 because it includes conversion and purification steps associated with producing high purity depleted uranium compounds as intermediates. These purification processing steps are part of the same industrial supply chain activity that has historically occurred at the site, namely, the production of depleted uranium metal for national security applications, but they are now being organized and scaled to meet current federal requirements for purity, throughput, and reliability. The NAICS designation reflects how operational steps are described in the contract, not a departure from the site's historical mission.

Importantly, BWXT's public statements that this work is "the same thing that AOT has always done" refer to the core mission and end product, not to an assertion that every upstream process step is unchanged. The site has been part of the depleted uranium metal supply chain for decades, and the metal reduction step, which converts uranium compounds into depleted uranium metal, has long been performed in an existing building at the facility under established controls. That final production step remains unchanged in its fundamental nature and continues to serve the same national security purpose.

The current HPDU project expands and modernizes the upstream processing steps needed to support that long-standing metal production mission, ensuring the government has a reliable, domestic capability to produce high-purity depleted uranium metal. In that context, the NAICS code reflects the inclusion of all manufacturing steps within the broader, historically consistent activity of producing depleted uranium metal for national security needs, rather than a change in the site's purpose or land use.

XII. Past Incidents and Future Public Safety

BWXT has experienced many documented environmental, radiological, and workplace safety incidents at multiple facilities over time, some occurring during routine operations rather than extraordinary events. What assurances will BWXT provide to ensure their operations in Washington County will not follow the same pattern, particularly given the proximity of local population and watershed considerations?

We understand and appreciate the community's concerns regarding past incidents at various BWXT facilities. It is important to clarify that while incidents may have occurred at other locations, the operations in Washington County will be governed by a strict framework of site-specific controls, modern engineering practices, and continuous regulatory oversight designed to prioritize safety and environmental protection.

Assurances for our operations are not based solely on corporate statements but are embedded in regulatory requirements, permitting conditions, and comprehensive safety measures. The HPDU facilities will adhere to current regulatory standards that are significantly more stringent than those in the past. Key safety features include:

- *Controlled Indoor Operations:* All processes will be conducted within secure, controlled indoor environments that are designed to minimize exposure and prevent the release of materials.
- *Engineered Containment:* We will implement robust containment systems to ensure that any hazardous materials are securely managed, significantly reducing the risk of environmental spill or exposure.
- *Elimination of Liquid Waste:* Routine liquid process waste will be entirely eliminated, with all wastes being solidified and disposed of off-site, further mitigating risks to local watersheds.
- *Fire Mitigation Design:* Facilities will be constructed with modern fire-mitigation systems to protect both the site and surrounding community.
- *Layered Emission Controls:* Our operations will incorporate an array of emission controls, routinely reviewed and approved by regulatory authorities to ensure compliance with safety limits.

Environmental, radiological and workplace safety performance is strictly regulated at the facility level. Each facility operates under its own permits and licenses, with regulatory agencies having the authority to enforce compliance, require corrective actions, suspend operations, or revoke authorizations if necessary. This regulatory framework ensures that any operations conducted are safe for the local population and protective of water resources.

It is also crucial to recognize that regulatory systems are specifically designed to address concerns regarding proximity to populations and waterways. Watershed protection, air emissions, waste handling, emergency response, and occupational safety are evaluated through formal processes such as permitting and NEPA reviews, where we must demonstrate that operations remain within protective safety limits for workers and the public.

Ultimately, the rezoning process focuses on determining land-use compatibility rather than evaluating corporate histories or predicting future incidents based on unrelated sites. The Washington County Planning Office has thoroughly evaluated this request based on land-use criteria and has recommended approval.

In summary, the operations planned for Washington County will be safeguarded by state-of-the-art design, strict regulatory requirements and ongoing oversight. We are committed to being a responsible neighbor and ensuring the safety and well-being of the community and the environment.

#